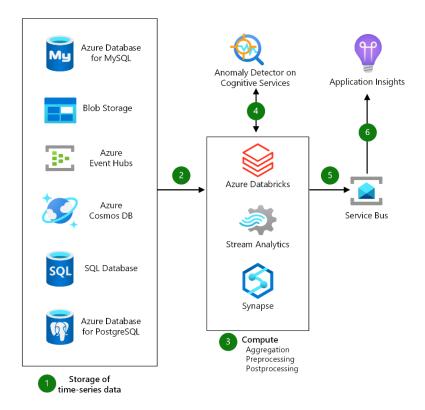
Spam Email Detector in Azure


Introduction

Spam emails can be a significant nuisance for individuals and businesses alike. However, with the advancements in machine learning and cloud computing, we can now leverage powerful tools and platforms to build robust spam detection systems. In this blog, we will explore how to build a spam detector using Azure, Microsoft's cloud computing platform.

Problem Statement

The objective of this project is to develop a machine learning model that can accurately classify emails as spam or non-spam. By leveraging Azure's services and tools, we will create a scalable and efficient spam detector. This will enable individuals and organizations to filter out unwanted emails and enhance their productivity.

Architecture

Prerequisites

Azure account

Technical Details and Implementation of Solution

Create Resource Group

Run the following from Azure Cloud Shell

```
resourceGroupName=spam$RANDOM-rg
```

location=SouthCentralUS

az group create \

--name \$resourceGroupName $\$

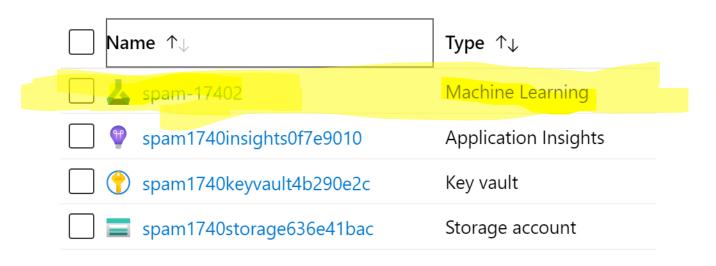
--location \$location

Create Azure Machine Learning Workspace

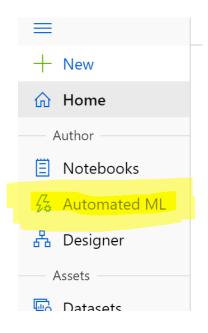
Run the following in Azure Cloud Shell to create an Azure Machine Learning Workspace

workspace=spam-\$RANDOM

az extension add -n azure-cli-ml

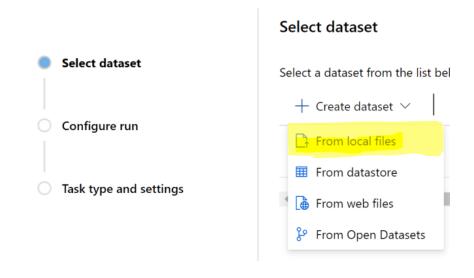

az ml workspace create -w \$workspace -g \$resourceGroupName --sku enterprise

Data Collection

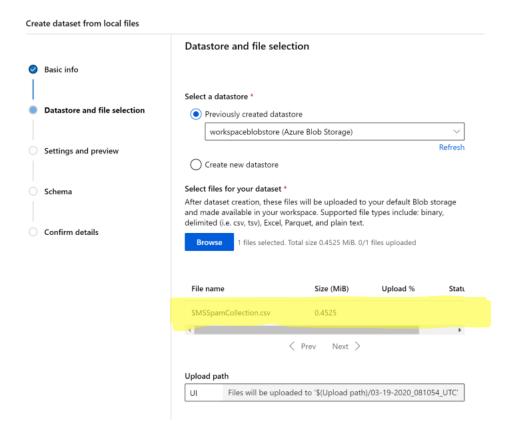

Collect a labelled dataset of spam and non-spam emails.

Creating new Automated ML Run

Using the Azure Portal, open the Azure Resource Group. Click on your Azure Machine Learning Workspace.



Select Automated ML from the left.


Select New Automated ML Run

Select Create dataset, then select from local files.

Create a new Automated ML run

Select Browse and find the downloaded and unzipped spam csv file.

Select the dataset created and then click next.

Create a new Automated ML run

	Select dataset			
Select dataset	Select a dataset from the list below, or create a new dataset. Automated ML			
Configure run	$+$ Create dataset \checkmark Show supported datasets only			
	Dataset name	Dataset type		
Task type and settings	Spam Data	Tabular		
	<			

Put the spam column in the target column. Give a meaningful name to the project.

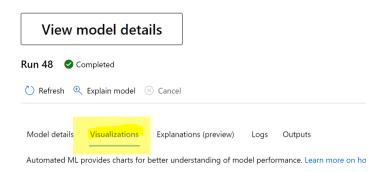
Create a new compute.

Configure run

Configure the experiment. Select from existing experiments or define a new name, select the target column and the training compute to use. Learn more on how to configure the experiment 🖸

Dataset	
Spam Data (View dataset)	
Experiment name *	0
spam-experiment	0
Target column * 🕕	
spam	\sim
Select training cluster * ①	
Select a Compute	~
🛱 Create a new compute 👘 🔿 Refresh compute	

New Training Cluster


Decause the	uld not include personal data or other sensitive information in fields marked with content in these fields may be logged and shared across Microsoft systems to tions and troubleshooting. Learn more	×
Compute name *	0	Φ
auto-ml-compute	e	
Machine Learn more.	ing Compute is a managed training environment consisting of one or more nodes. L	≥arn
Region * 🛈		
southcentralus		
Virtual Machine si	ze * 🕕	
Standard_DS12_v	2	₽
Virtual Machine p	riority * 🕕	
Dedicated	Low Priority	
Minimum number	r of nodes * 🕕	
0		
Maximum numbe	r of nodes * 🕕	
6		
Idle seconds befo	re scale down * 🛈	
120		
> Advanced set	ttings	

Once the compute has been provision and added to the run configuration go to Tack Type and Settings and select Classification as the task type.

<u>111</u>	Classification To predict one of several categories in the target column. yes/no, blue, red, green.	
	Enable deep learning (preview) 🕕	

	Starting Starting				
)etails	Data guardrails	Models Log	s Outputs		
Run su	immary				
Task typ Classific	pe ation 📧 View all	run settings			
Primary					
Accura Run sta					
Startin					
	nent name experiment				
Run ID					
	L_517407.5				
Input d	atasets				

Once the run is complete, view the visualizations for the best model by selecting View model details then Visualizations

Conclusion

In this blog, we have explored the process of building a spam detector in Azure. With this knowledge, a powerful spam detection systems can be developed to protect individuals and organizations from unwanted emails. Leveraging Azure's services, we can create scalable and efficient solutions that enhance productivity and security.

Challenges in implementing the solution

The biggest challenge for implementing this was applying the basics of cloud computing to make a working ML Model in Azure as even after following 5+ tutorials, due to ever changing technology, many errors were encountered.

Business Benefit

Azure ML enables businesses to automate and accelerate the machine learning model development process. It reduces time-to-market, improves accuracy, and allows organizations to leverage their data effectively. With AzureML, businesses can make data-driven decisions, optimize processes, and gain a competitive edge in their industry.

References

https://stochasticcoder.com/2020/03/24/spam-detection-with-azure-automated-ml/

https://www.codeproject.com/Articles/1229597/Detecting-Spam-with-Azure-Machine-Learning